MS4 Progress Report Aug. 1, 2020 - July 31, 2021

MS4 Community Annual PEP Checklist

This document outlines your community's required activities for the 2021 Reporting Period. Check the box for each action as you complete it and provide supporting documentation where indicated. The 2021 PEP Focus Areas are: Personal watershed stewardship, Personal actions that can affect the watershed, Waste disposal assistance

Community Name: City of Grand Rapids Priority Activities: ☐ 1. Ensure Community website links to the LGROW website (www.LGROW.org) https://www.grandrapidsmi.gov/Government/Departments/Environmental-Services/Stormwater-**Management** ☑ 2. Publish at least 1 article on PEP topics in Community newsletter or news outlet Name of newsletter/news outlet: GRConnected Distribution/Reach of newsletter/news outlet: ~12,000 residents PEP Topic(s) addressed: ☐ General Watershed Awareness ☐ Stormwater Discharge Location/Impacts\□ Illicit Discharge Reporting ☐ Septic System Management □ Personal ☐ Waste Management Assistance Actions Link: https://us16.campaign-archive.com/?u=181cb0b9192edd05ab2beaa2c&id=006be58e54 ☑ 3. Community presence or Stormwater Display at 1 event or location Event Date: Digester Tour as part of LGROW Spring Forum Event Location: June 14, 2021 at Water Resources Recovery Facility Photos Attached. ☐ 4. Distribute pollution prevention information to at least 2 targeted businesses/groups listed in PEP Title(s) of Material(s) Distributed Names of Businesses Business 1 Material Name Material Name Business 2 Business 3 Material Name newsletter, or website (You may attach a separate social media report for #'s 2 & 5 if you have additional posts to report) Date shared: See social Media Report Location shared: Choose an item. Social Media Post Reach: # Social Media Post Engagement:

All chapstick, shopping bags, stress balls, pens, magnest paint by numbers and stress balls allocated to us were distributed at our February 2020 home show booth. Items below were distributed during this reporting year.

Item	# Distributed	Item	# Distributed
LGROW Chapstick	#	Pet Waste Bag Dispenser	#
LGROW Shopping Bag	#	Troutie Coloring Book	#
Trout Stress Ball	#	WMEAC Coloring Book	# <u>13</u>

MS4 Progress Report Aug. 1, 2020 - July 31, 2021

LGROW Pen	#	Paint by Number	#
Only Rain Snap Bracelet	# <u>6</u>	Watershed Brochure #	
Reusable Straw	<u>6</u>	EPA Stormwater Solution	#
		Brochure	
HHW Magnet	#	Landscapting for Water Quality	2

Other Activities

☐ 7. Cohost a LID/Green Infrastructure workshop for Community members with LGROW

Workshop Date: Click or tap to enter a date.
Workshop Location: Click or tap here to enter text.
of Attendees: Click or tap here to enter text.

⋈ 8. Host, participate in, or support a stream cleanup effort

Sponsored 2020 Mayors' Grand River Cleanup Cleanup Dat 9/12/2019 through 9/17/2020: Cleanup Location: Throughout watershed

of Volunteers: >700

*Estimate from WMEAC, not all volunteers registered in the system developed to spread out volunteers due to coved. Over 6,500 punds of trash wer collected.

Storm Drain Marking Event Date: Click or tap to enter a date.

of Participants in Event: # # of Storm Drains Marked:

of Pre-Marked or Stamped Drains already existing in Community: Unless in an historic area, all new basin grates are marked.

Date(s) of program promotion: 10/2/2020, 11/11/2020, 7/12/2021, 7/16/2021

Method of program promotion: Facebook

Social Media Metrics (Post Reach, Post Engagement): See attached Social Media Report *LGROW will create a report of the number of drains adopted in your Community

☐ 11. Provide presentation on PEP topics to a school in your Community

Date of presentation: Click or tap to enter a date.

Location of presentation: Click or tap here to enter text.

of Students Reached:

Provide Social Media Metrics (Post Reach, Post Engagement): See attached Social Media report

Other Public Engagement Activities Completed

Use this space to provide additional detail on Public Engagement Activities described above or to describe other Public Engagement Activities completed in your Community during the reporting period. Click or tap here to enter text.

^{*}Attach a copy of workshop sign-in sheets or photos

Appendix 2-A - Summary of Municipal Commitments Completed August 1, 2020 to July 31, 2021

	Completed Adgast 1, 2020 to	· · , - · ·		
LGRW Prioritized Objectives for Permittees from 2011 WMP	Commitment	Timeline	Measures of Effectiveness	
Encourage proper septic tank management.	Provide educational brochures to all homeowners with septic systems. Currently there are approximately 257 within the City limits, none of which have storm sewers in the area.	December 2012.	Document that all brochures were sent. Report number of septic tank failures reported.	
Actions completed:	All identified septic system owners have been septic systems are identified.	notified. Additional notification	ons will be performed if additional	
Encourage septage ordinance.	Continue to work with the County or the Committee on septic tank issues.	Ongoing.	Number of failed septic systems connected to public sewer. Number of failed septic systems reported to Health Department and number of repairs and permits issued.	
Actions completed:	There were no known septic system failures in the City during this reporting period. See attached septic data from the Kent County Health Department.			
Implement vegetative buffering practices. Restore and protect the stream buffer and canopy.	Continue to enforce environmental features ordinance passed in 2012 requiring a 75-foot buffer protecting rivers, wetlands, streams, water bodies and sensitive environmental receptors.	Continue to implement environmental features buffer.	Report number of sites where buffer ordinance was applied.	
	Prepare and adopt tree ordinance for the protection and restoration of the City's canopy.	Implement tree ordinance by June 30, 2013.	Adoption of tree ordinance.	

LGRW Prioritized Objectives for Permittees from 2011 WMP	Commitment	Timeline	Measures of Effectiveness
Actions completed:	Of the 109 private development projects permitted during the reporting year, two (2) projects encroached into the 75' wetland features buffer. Both of those projects maintained a 50' buffer which allowed for the projects to be reviewed and approved administratively by staff.		
Implement MDNR wildlife population management practices.	Continue to install "Don't feed the wildlife signs" where needed. Provide online training for staff.	Ongoing. Provide training by June 2013.	Number of signs – less feeding observed. Number of staff attending training.
Actions completed:	The City's only problematic areas of feeding w these locations. 111 people were trained online		mond Parks. Signage is installed at
Implement sanitary sewer maintenance practices.	Maintain compliance with CMOM (Capacity, Management, Operation & Maintenance) for sanitary sewers in order to prevent seepage to storm sewers.	Ongoing.	Refer to cmom.net. Maintenance items are tracked in an enterprise asset management system.
Actions completed:	CMOM compliance has been maintained.		
Implement Low Impact Development practices.	Continue implementing commitment to LID, as detailed in Green Grand Rapids, a 2012 addendum to our Master Plan.	Ongoing.	Number and type of LID practices utilized at City properties.
Actions completed:	There were a total of 9 projects with LID practimain focus of these projects included 8 park faimprovements. The main practices used were Water Resource Recovery Facility, and the expleaching basins.	acilities, where a citizen passe leaching basins and rain gard	ed millage allowed for overall park dens. Various work continues at the

LGRW Prioritized Objectives for Permittees from 2011 WMP	Commitment	Timeline	Measures of Effectiveness
Implement watershed focused land-use planning.	Continue enforcement of the City's current floodplain ordinance to protect flood plains not regulated by MDEQ. Continue enforcement of the city's current pet waste ordinance. Continue implementing commitment to LID, as detailed in Green Grand Rapids, a 2012 addendum to our Master Plan.	Ongoing.	Number of plans reviewed. Number of offsite LID practices implemented.
Actions completed:	This reporting period, 109 permits were issued for City and private projects. Of the permits issued, 43 were private projects that incorporated LID. Typically, LID is only implemented when impervious surfaces at a site are increased. The LID improvements included a combination of: 16 Detention / Retention Basins, 11 sites with infiltration practices, 6 Vegetated Swales, and 6 Water Quality Devices. There were also 24 right-of-way infrastructure projects that incorporated LID practices into the design of the public storm sewer system and street design. These projects included infiltration basins, expanded tree planting systems, infiltration trenches, vegetative bulb outs, and porous pavement.		
Implement proper soil erosion and sedimentation control techniques.	Continue to enforce regulations as a Municipal Enforcing Agency. Train City field staff in SESC. Maintain certifications of Construction Stormwater Operators.	As projects are reviewed. Train a majority of field staff by June 30, 2013. Continue certifications.	Maintain MEA status. Percent of field employees trained. Number of Construction Stormwater Operators.
Actions completed:	Currently, 25 of the 41 required personnel (61%) are trained in construction stormwater operator training. Hile this did not incres over the last year as anticipated, we do have 20 staff that are trained and not inpositions where it is required. We will continue training staff that are required to have this certification. Our goal for next reporting year is to have 75% of the 41 required personnel to receive this training.		

LGRW Prioritized Objectives for Permittees from 2011 WMP	Commitment	Timeline	Measures of Effectiveness
Implement channel streambank stabilization,	Compliance with DEQ permit conditions for any work that occurs within a stream.	Continue to obtain DEQ permits for construction in a stream or channel.	Number of projects needing permits and permits obtained.
bio engineering and erosion control techniques.	Flow restriction ordinance for all streams and reduced flow for impaired streams.	Continue to implement flow controls per stormwater ordinance.	Number of sites limited to reduced discharge.
Actions completed:	The City has three (3) project that required an EGLE permit for stream or channel construction this year. Alger Ravine and Glen Echo have been approved and permitted in the 2021 reporting year. Alger is scheduled ot start construction in September of 2021 and Glen WEcho is slated for construction to start in early 2022. The third project, Acacia, is still awaiting its permit. It is to do bank stabilization and debris removal after debris on an aierial sanitary crossing caused erosion that washed away a manhole bottom. Of the LUDS permits issued by the City this reporting year, 16 had flow restrictions to protect all waterways and five (5) had flow restrictions for impaired waterways (Plaster Creek).		

LGRW Prioritized Objectives for Permittees from 2011 WMP	Commitment	Timeline	Measures of Effectiveness	
Implement turf management and proper fertilizer application practices.	Continue to be in compliance with the State of Michigan Public Act 299 of 2010. Staff is trained in proper use of pesticides, herbicides and fertilizers. Contracts for these services contain language requiring proper usage. a. "No clippings of grass or weeds may be left in the street, on the curb, parkways, or sidewalk, but must be properly disposed of by the contractor." b. "All chemicals and materials which are spilled or misapplied to areas other than turf shall be cleaned up immediately. The contractor shall not allow chemicals & other materials to enter storm sewers, catch basins and/or water ways." c. "No chemical of any kind may be discharged into the gutters or sewer system. If granular(s) are used they must be swept or blown clean off all impermeable surfaces."	Ongoing.	Number of staff trained. Number of contracts issued.	
Actions completed:	Four City staff members are certified in pesticide application by the state. This certification requires ongoing training, including fertilizer and herbicide application. These employees are responsible for application of pesticides, herbicides, and fertilizers. There were eight landscape maintenance contracts issued this year.			

Appendix 2-B - Storm Water Controls Inspection, Maintenance and Effectiveness August 1, 2020 to July 31, 2021

	710900	,	July 31, 2021	
Property Name: C	ity Wide			
Structural Storm Water Control	Inspection Frequency	Maintenance Schedule	Inspection and Maintenance Conducted and Location of Log (if applicable)	Effectiveness of Control and Support Documentation
Stormwater Manholes	Complaint Based	N/A	2275 Cleaned 29 Repaired	Identified problems were fixed and pollutants were removed.
Stormwater Catch basins	Complaint Based	Clean 2,500 annually	3034 Cleaned	746 tons of solids were removed from the stormwater system and kept from the waterways.
Discharge Points	Complaint Based	N/A	252 Inspected discharge points and backflow preventers were inspected	In 2014, backflow preventers were in installed in Grand Rapids and Walker. All backflow preventers are now inspected annually.
Stormwater Laterals	Complaint Based	N/A	56 ft. Cleaned 12 Repaired	Identified problems were fixed.
Stormwater Pressurized Mains	Complaint Based	Bi-weekly Inspection visit	Inspections occur once every 3 weeks from May through October and once every 4 weeks from November through April.	No failures of a stormwater pumping station during a rain event.
Stormwater Lift Stations	Complaint Based	Bi-weekly Inspection visit	8 wet wells were cleaned as needed based on inspections.	Annual cleanings appear to be sufficient.
Stormwater Gravity Mains	Complaint Based	N/A	421,026 ft. Cleaned 22 Repaired 556 ft. Rootsawed	Identified problems were fixed and pollutants removed.
Infiltration Basins (underground)	Complaint Based	10 yr. Inspection cycle	Joe Taylor Park was inspected and determined to be good through 2022 Mary Waters due in 2026	The basins appear to function well.
Detention Basins	Complaint Based	Maintain & Inspect three times annually	The one pond that is operated by the City was inspected once every 2-8 weeks.	The basin appears to function well.

Hydro Separators	Complaint Based	Clean twice year	8 Cleaned	We have found that most separators are functioning fine with 1 cleaning annually. 1 unit will require 2 cleanings annually.
Siphons	Complaint Based	Clean annually	1 (286 ft.) Cleaned	Annual cleanings appear to be appropriate. As construction projects take place, we continue to remove as many siphons as possible.
Creek gates	Complaint Based	Clean annually	48 Cleaned 12 inspected	Responding to complaints ensures that the worst areas are addressed more often.
Open Ditches	Complaint Based	N/A	3 ditches were excavated and cleaned. 5.9 miles of ditches were inspected.	We have been performing ditch inspections per our asset management plan since 2016.

Appendix 2-C - Procedures Status by Type of Property– Part 1 August 1, 2020 to July 31, 2021

The following Pollution Prevention and Good Housekeeping procedures were adopted by the City. Dates of revised procedures are

listed and revisions attached.

Types of Properties	O&M Procedure	Location on http://mygrcity.us/collaboration/swppp
PW, W, WW	Concrete Waste Management	BMP Concrete Waste Management.pdf
A, C, D, F, G, L, M, Pk, Po, PW, R, T, V, W, WD, WW	Dumpster Management	BMP Dumpster Management.pdf
Pk, PW, W	Erosion and Sediment Control	BMP Erosion and Sediment Control.pdf
F, G, Po, PW	Fueling Areas	BMP Fueling Areas.pdf
A, F, G, L, M, Pk, Po, PW, T, W, WD, WW	Garbage Storage	BMP Garbage Storage.pdf
D, Pk, PW, W, WD, WW	Material Covering	BMP Material Covering.pdf
D, Pk, PW, W, WD, WW	Outdoor Storage Areas	BMP Outdoor Storage Areas.pdf
Pk, PW, W, WD, WW	Outdoor Storage, Raw Materials	BMP Outdoor Storage, Raw Materials.pdf
PW	Paving and Grinding Operations	BMP Paving and Grinding Operations.pdf
F, M, PW, W, WW	Petroleum and Chemical Storage, Small Quantities	BMP Petroleum and Chemical Storage, Small Q.pdf
F, M, PW, W, WW	Petroleum and Chemical Disposal	BMP Petroleum and Chemical Disposal.pdf

Types of Properties	O&M Procedure	Location on http://mygrcity.us/collaboration/swppp
F, M, W, WW	Petroleum and Chemical Handling	BMP Petroleum and Chemical Handling.pdf
F, W, WW	Petroleum and Chemical storage bulk	BMP Petroleum and Chemical Storage, Bulk.pdf
F, L, M, Pk, Po, PW, W, WW	Salt Application	BMP Salt Application.pdf
PW	Sand and Salt Storage	BMP Sand and Salt Storage.pdf
A, D, F, G, L, M, Pk, Po, PW, W	Solid Waste Management	BMP Solid Waste Management.pdf
A, F, M, Pk, PW, W, WD, WW	Spill Cleanup	BMP Spill Cleanup.pdf
A, F, M, Pk, PW, W, WD, WW	Spill Prevention Control and Cleanup	BMP Spill Prevent Control.pdf
PW, W	Dust Control	deq-wb-nps-dc_250612_7.pdf
A, D, F, G, M, Pk, PW, W, WD, WW	Equipment Storage and Maintenance Areas	deq-wb-nps-ems 250618 7.pdf
F, L, Pk, Po, PW, R, V, W, WD, WW	Fertilizer Management	deq-wb-nps-fm_250620_7.pdf
F, L, Pk, Po, PW, R, V, W, WD, WW	Lawn Maintenance	deq-wb-nps-lm_250884_7.pdf
D, F, L, Pk, Po, PW, W, WD, WW	Organic Debris Disposal	deq-wb-nps-odd_250887_7.pdf
F, L, Pk, Po, PW, W, WD, WW	Pesticide Management	deq-wb-nps-pm_250893_7.pdf

Types of Properties	O&M Procedure	Location on http://mygrcity.us/collaboration/swppp
ww	Stream Bank Stabilization	deq-wb-nps-sbs_250898_7.pdf
PW, W, WW	Soil Management	deq-wb-nps-sm_250902_7.pdf
ww	Slope, Shoreline, Stabilization	deq-wb-nps-sss 250907 7.pdf
Pk, PW	Street Sweeping	deq-wb-nps-sw_250908_7.pdf
F, L, M, Pk, R, V, WD, WW	Trees, Shrubs and Ground Covers	deq-wb-nps-tsg_250910_7.pdf
PW	Winter Road Management	deq-wb-nps-wrm_250914_7.pdf
Pk	Golf Course Manual	ess-nps-Golf-Course-Manual 209682 7.pdf
Pk, PW	Road Salt Storage	Road Salt Application and Storage.doc

Appendix 2-C - Procedures - Good Housekeeping and Pollution Prevention by Property Type - Part 2

General operations and maintenance items for Transportation, Parking , Maintenance Garages and O&M Waste Disposal.

- (1) controls for reducing or eliminating the discharges of pollutants from streets, roads, highways, parking lots, and maintenance garages;
 - (a) Streets, roads, highways
 - a. Street Sweeping goal is once every 70-90 days (weather dependent). This
 reporting year, major streets were swept 5 times and local streets were swept 3
 times.
 - b. Salt Application Drivers are trained with new equipment to utilize salt most cost effectively which minimizes the amount used on the roadways.
 - c. SESC Program tracking and construction is controlled via ordinance
 - d. Vehicle Accident Spills Fire Department has a policy for cleanup and control in place as submitted with the 2011-2012 annual report.
 - e. Dust Control See BMP sheet
 - f. Snow Removal See BMP sheet
 - g. Gravel Road See BMP sheet
 - h. Roadside Vegetation See BMP sheet
 - (b) Parking lots
 - a. Every surface parking lot has check sheet has cleaning the curb lines as a daily activity (5 days per week). Larger pieces of trash or debris are removed daily from the lot. Finer materials of grit and gravel are allowed to accumulate until there is a sufficient volume to warrant sweeping. Sweeping the curb lines is done weekly, monthly, or bi-monthly, depending on the inspection, season or activity in the lot.
 - b. During the winter months curb line cleaning activity is reduced due to snow accumulation. However, when the snow melts in the spring the curb lines are cleaned as they become accessible. During the fall, falling and blowing leaves require more attention and result in an increased frequency of cleaning curb lines.
 - c. Parking lots associated with City own buildings are cleaned on an as needed basis. The department responsible for the lot inspects and schedules cleaning.
 - (c) Maintenance garages
 - a. The maintenance garage and public works yard including salt storage has trained staff. Work has been ongoing to formalize the activities in this area.
- (2) procedures for the proper disposal of operation and maintenance waste from the separate storm water drainage system (dredge spoil, accumulated sediments, floatables, and other debris);
 - (a) dredge spoil, accumulated sediments, floatables, and other debris from the use of City staff and equipment for these activities are dumped on a concrete slab located at the wastewater treatment plant (WWTP). The liquid is discharged to the WWTP and solids disposed of in a type II landfill. The DEQ staff was shown the facility during a June 3, 2011 MS4 Inspection.
 - (b) Contractors are required as part of their contract to properly dispose of dredge spoil, accumulated sediments, floatables, and other debris in a type II landfill.
- (3) ways to ensure that flood management projects assess the impacts on the water quality of the receiving waters and, whenever possible, examine existing water quantity structures for incorporation of additional water quality protection devices or practices.

MS4 Progress Report Aug. 1, 2020 - July 31, 2021

(a) Green Master Plan Update establishes the baseline for these requirements and is complemented by Zoning and Planning Ordinances.

- (b) The Strategic Plan and Green Infrastructure Portfolio Standards includes goal and targets to address water quality.
- (c) Vital Streets Guidelines require Low Impact Design to be the default, unless there are engineering reasons precluding it.
- (d) Use of Green Infrastructure and Low Impact Design is reviewed and incorporated into all public projects when affordable and appropriate.

Appendix 2-D - Staff and Contractors Training on Pollution Prevention and Good Housekeeping Completed August 1, 2020 to July 31, 2021

Where a meeting was attended for training, attached are sign in sheets listing the training topic, date of the training and the number of attendees. Also attached are a copy of the handouts (if any) that were distributed at the training meeting.

Training Topic Area	Employee Group to Receive Training	Training Frequency Goal	Potential Training Type
SWPPI Requirements			
Maintenance activities, maintenance schedules, and inspection procedures	Collection System Maintenance Group	Ongoing First 6 months of hire	Written O&M Procedures Office of Water Programs, California State University, Sacramento Operation and Maintenance of Wastewater Collection Systems, Volumes I & 2
Training completed:	maintanence. All 12 of the	em have taken and	passed the CALIFORNIA STATE UNIVERSITY, Wastewater Collection Systems, Volume I and II.
Controls on streets, parking lots, maintenance garages, and storage yards	Public Services, Facilities and Fleet Management, Field Staff and Parking Services	Hire in 2 year cycle	Online training which may include Powerpoints and/or the following videos Storm Watch - Municipal Storm Water Pollution Prevention - DVD from Excal Visual, LLC Spills & Skills - Non-Emergency HazMat Spill Response - DVD from Excal Visual, LLC Keep An Eye On It! - Environmental Awareness for Gravel Road Maintenance - DVD from SEMCOG & Road Commission for Oakland County

Training Topic Area	Employee Group to Receive Training	Training Frequency	Potential Training Type
	_	Goal	
Tuelala a constate t	Training is performed on h	ire. If deficiencies a	are noted during the quarterly inspections, responsible
Training completed:	parties are trained on the	proper techniques.	
Disposal of O&M waste	Collection System Maintenance Group	Ongoing	Written O&M Procedures
	Contractors	Contract	Written contract requirements
	The Operation and Mainte	nance of Wastewate	er Collection Service training noted above includes
Training completed:	managing a collection syst	em O&M program,	supervising a sewer cleaning program, and complying
	with the NPDES permit and	d applicable rules a	nd regulations.
Water quality protection in flood control	Stormwater	Ongoing	Training consistent with LID and other
projects (detention basins, dams)	Management Personnel,		training/conferences as they become
	Field Staff & Design		available
		m through EGLE. In	d staff have passed the comprehensive soil erosion and addition, several field and design staff are trained as
Training completed:	Spring Forum in June and Leadership Exchange (May	Ottawa County's vii y) was also attende	Stormwater management led activities for LGROW's rtual forum in November. The Green Infrastructure d by a member of management and another member of infrastruture Certification Program certification.

Training Topic Area	Employee Group to Receive Training	Training Frequency Goal	Potential Training Type
Controls to reduce discharge of pesticides, herbicides, and fertilizers	Contractors	Ongoing	Compliance with the State of Michigan Public Act 299 of 2010 Staff is trained in proper use of pesticides, herbicides and fertilizers Contracts for these services contain language requiring proper usage a. "No clippings of grass or weeds may be left in the street, on the curb, parkways, or sidewalk, but must be properly disposed of by the contractor." b. "All chemicals and materials which are spilled or misapplied to areas other than turf shall be cleaned up immediately. The contractor shall not allow chemicals & other materials to enter storm sewers, catch basins and/or water ways." c. "No chemical of any kind may be discharged into the gutters or sewer system. If granular(s) are used they must be swept or blown clean off all impermeable surfaces."
Training completed:	Appendix 2-A, staff in cha	rge of pesticide, he	gree to abide by the requirements above. As noted in bicide and fertilizer application are certified by the State ludes herbicide and fertilizer application practices.
Other Topics			
Construction site stormwater runoff	Field Staff Contractors	Preconstruction meeting	Training may include one or both of the following; Ground Control - Storm Water Pollution Prevention for Construction Sites - DVD from Excal Visual, LLC LGRW_ContractorTrainingBrochure_2011-09-16.pub

Training Topic Area	Employee Group to Receive Training	Training Frequency Goal	Potential Training Type
Training completed:	pre-construction meetings practices were reviewed w	were held, and location with contractor staff.	struction meetings and trainings were not held. Virtual all and state SESC permitting and construction best. Bids and specifications were reviewed and ensured that were to be completing field inspections.
LID	Stormwater Management Personnel, Field Staff & Design Personnel	Ongoing	Provide copies of the SEMCOG Low Impact Design manual. Provide opportunities for training and attendance of webinars and other conferences. The following videos are also available for their use; Reduce Runoff: Slow It Down, Spread It Out, Soak It In - DVD from USEPA RiverSmart Homes: Getting Smart about Runoff - DVD from USEPA Building Green: A Success Story in Philadelphia - DVD from USEPA After the Storm - DVD from USEPA BMP Tour of GVSU Campuses - Walking Tour
Training completed:	LID training was mention infrastructure tours and tra		ldition, a new staff member was given several green grifiltration rates.
IDEP	All Employees	Ongoing	Items will be maintained on City intranet and periodic announcements made. These items will include various brochures and include; WaterPollutionReportForm.doc Article_City_Employees.doc
Training completed:	112 new staff were trained	d this year.	
General Storm Water Education	Top Management	Annually	"Back to Basics" Storm Water Training – Live Presentations (in 2011 the Six Minimum Control Measures were highlighted)

Training Topic Area	Employee Group to Receive Training	Training Frequency Goal	Potential Training Type
Training completed:	, ,		rained on general stormwater during the Stormwater Commission on May 11, 2021.

Appendix 2E - Post Construction Controls Activities Completed August 1, 2020 to July 31, 2021

<u>Implementation</u>

The City of Grand Rapids Ordinances Ord. No. 2001-26, § 1 of 2001 and Ord. No. 2007-13, § 1 are the Stormwater Ordinances for the City. Post-construction controls for new development contained in the ordinance include:

- Limiting discharge rates to 0.13 cfs/acre for a 25-yr 24-hr storm.
- Limiting discharges to sensitive downstream receptors, including open channel banks susceptible to erosion, to 0.05 cubic feet per second per acre up to the two (2) year rain event.
- Treatment of the first ½" of rain for water quality.

The City of Grand Rapids Ordinances Ord. No. 2012-01, § 1 of 2012 is a zoning ordinance establishing setbacks for rivers, wetlands, streams, water bodies, or other sensitive environmental areas. Incentives for using Low Impact Development are also included in the zoning ordinances.

In addition, the Green Grand Rapids Master Plan Update depicts Grand Rapids' commitment to using Low Impact Development, conserving green space and protecting our waterways.

Operation and Maintenance

In 2010, the City had a draft stormwater ordinance that included long term operation and maintenance of post-construction controls. However, when the MS4 permit was withdrawn, the ordinance was not finalized for adoption. The use of operation and maintenance agreements are outlined in the draft permit submittals. The draft ordinance corresponding to the permit submittal will be submitted by December 1, 2020.

Currently, all post construction controls are inspected, to the extent they can be, from public rights of way. In addition, the City's nuisance ordinance can be utilized to inspect controls if a complaint is received by Code Enforcement.

Explain the enforcement activities of your comprehensive storm water management program for post-construction controls completed during this reporting period:

No enforcement was needed for post-construction controls after construction was completed.

Have any long-term operation and maintenance agreements been signed? No. See above.

Explain how the Post Construction Controls have addressed other issues, such as protecting sensitive areas, directing growth to identified areas, encouraging infill development in higher density urban areas and areas with existing infrastructure, and/or maintaining or increase open spaces:

The buffer ordinance noted above protects sensitive areas. The requirement for stormwater storage only when impervious has expanded, along with the presence of existing infrastructure, direct people to infill.

2021 Progress Report PART 4 - IDEP

Regional IDEP Activities

A detailed description of the IDEP activities undertaken on an individual basis is included below. The IDEP activities include dry-weather screening of discharge points, locating possible sources of contamination, responding to reported incidents, correcting the problems, and preventing new illicit connections.

The Technical Committee worked with MDEQ on IDEP revisions throughout the reporting period and submitted the final draft for review and approval on July 31, 2013.

Please describe any dry-weather screening conducted during the reporting period and the findings of that screening.

Screening was conducted in Summer 2018 and will be conducted next in 2024.

Please list any other known and/or resolved illicit discharges identified during the reporting period and status of elimination. For significant discharges, also list the pollutants involved with an estimate of the volume and loading.

Examples of illicit discharges include: malfunctioning septic systems; sanitary sewer leaks, overflows, or cross-connections; laundry water discharges; leaking fluids from vehicles, barrels, dumpsters, or tanks; concrete truck wash water; polluted runoff from temporary or permanent storage areas; improper fire hydrant flushing; spills from auto accidents; power washing wastewater; industrial/commercial wastewater, dumping; and any other violation of the IDEP ordinance.

US 131 North at Franklin Street

On 10/29/20, the GRPD reported that a vehicle began leaking diesel on 131 North at Franklin Street. It took the off ramp and stopped and 40-60 gallons of fuel was leaking. The road was already being cleaned at that time by private response.

SET was onsite at 6:45 pm and vacuumed 150 gallons out of the catch basin for disposal.

Please list the status and schedule for elimination for any illicit discharges identified but not eliminated during this reporting period. Also, report the status of any illicit discharges identified but not eliminated during previous reporting periods.

Highland Park / Coldbrook Creek / Northeast Grand Rapids

On 9/23/20, at approximately 11 am, Project Engineer Daniel Taber received a message from front office staff regarding a report from a resident of cloudiness being observed within the Coldbrook Drain at Highland Park.

Doug Spence, civil engineer, was dispatched to the area to investigate. Upon Mr. Spence's arrival to Highland Park at approximately noon, he was able to meet with the citizen that reported the cloudiness, Mr. Walter Taylor. Upon the start of his investigation, the cloudiness was still visible, but had dissipated from the earlier observations as reported by Mr. Taylor.

Doug proceeded to contact City staff and coordinate a response to determine source of the cloudiness. Adjacent streets were driven, and a manhole upstream of the park was opened and inspected. No additional cloudiness was observed at this time, and the cloudiness had dissipated without a source being determined at approximately 3pm. No estimation was able to be made of substance(s) or volumes of what was causing cloudiness within the drain.

Mr. Spence is continuing in investigation this morning, including inspecting a pond further upstream of the site along the Coldbrook Drain at 460 Fuller NE. We continue to plan on inspecting the creek regularly to determine the source, as this could be an reoccurring discharge as Mr. Taylor has indicated he has seen this cloudiness before.

However, this is a very large drainage area and finding a small intermittent discharge may take time.

Please describe actions taken when indications of illicit discharges have been identified, if any.

Standard procedures are identified above. We take immediate response to stopping the discharge and then identify the source and responsible party.

- An estimated quantification of the number of discharges eliminated, and
- An estimated quantification of the volume of illicit flow eliminated (For large spills or, where the amount discharged is possible to estimate).

One illicit discharges was eliminated, which prevented approximately 150 galons of diesel from entering the river.

Identify any specific coordination with the health department in response to illicit discharge elimination for failed or failing septic fields.

No potentially failing septic fields were identified during this reporting period, so coordination with the health department was not required. We are in frequent contact with the health department, though, and they have been responsive when needed in the past.

Describe the effectiveness of the program to prevent illicit discharges and the method used to assess effectiveness.

While IDEP outfall sampling has identified some illicit discharges in the past, we get a greater quantity reported by educated staff and citizens who are keeping an eye out along with our River Run sampling.

PART 5 - New Point Source Discharges of Stormwater

Do you own or operate any NEW or previously unidentified stormwater discharges? Yes No If "yes," please indicate which discharge points are new on your outfall map or list.
Is your stormwater discharge point map attached or provided electronically? Map is attached Map is provided electronically Other. Please explain in comments section.
Is your stormwater discharge point list attached or provided electronically? List is attached List is provided electronically Other. Please explain in comments section.
Comments: List and map provided as a part of the MS4 permit application.

PART 6 - Nested Drainage System Agreements

Please list all nested jurisdictions with whom you have a coo	operative agreement:	
Name of Nested Jurisdiction	Agreement previously provided to MDEQ	Agreement attached
N/A	Yes No	Yes No
	Yes No	Yes No
	Yes No	Yes No
	Yes No	Yes No
Comments: The City of Grand Rapids does not have any ne	sted jurisdictions.	

PART 7 - Other Actions

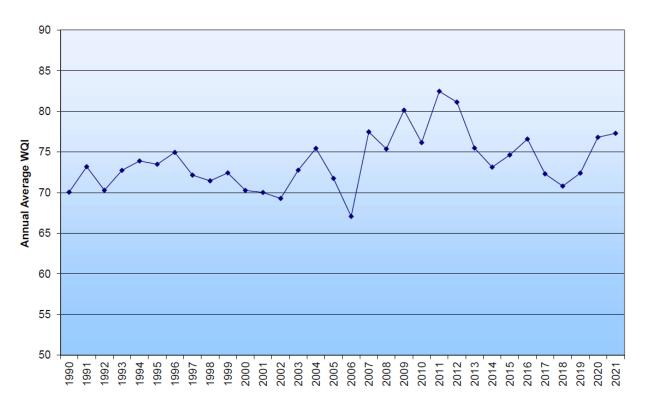
Please list any extra efforts your community has conducted above and beyond your commitments recorded above (e.g., stream buffer ordinance adoption, new management techniques, invasive species control, habitat enhancement/protection, logjam removal, stream/beach clean-ups, etc.) that have helped implement the **Lower Grand River Watershed Management Plan**:

Along with the items listed under public education and in Appendix 2-A, the City partners with the following organizations regularly: Plaster Creek Stewards, WMEAC and Trout Unlimited to install green practices, perform river cleanups and increase public awareness.

Please list any other actions your community has conducted to reduce stormwater pollution

City staff is on the boards and/or committees of the Lower Grand River Organization of Watersheds, West Michigan Soil Erosion Control Network, Great Lakes Stormwater Collaborative, Michigan Water Asset Management Council and the Green Infrastructure Leadership Exchange.

In addition, we spent over \$900,000 on green infrastructure as part of our Vital Streets program in 2020.


PART 8 - Revisions to the SWPPI

	ion of the effectiveness of your stormwater BMPs, are there any commitments o or removed from the SWPPI?
No, the SWPPI doe	es not need any revisions
☐ The following revis	ions to the SWPPI could be considered:
Original SWPPI Section/Subsection	Revision

Part 9 – 2020 Stormwater Special Reporting

- a. Environmental Impacts [40 CFR 122.42(c)(7)]
 - a. A Grand River Water Quality Index (WQI) of 71-90 indicates good water quality with high diversity of aquatic life and very few limits for recreational use. The WQI graph shows that the Grand River water quality continues to be good downstream of Grand Rapids. Extreme rain events in 2013 and 2014 and sampling within the first 48 hours of a rain event are likely why the WQI has decreased in 2013 and 2014. Grand Rapids has been monitoring the Grand River for forty years and the data is made available to those which request it.

Railroad Bridge North, Water Quality Index

UARTERLY	RIVER SURVEY	REPOR	Т	August 19, 2020 CITY OF GRAND RAPIDS EPSI									PSD			
Grand River		Time	Temp	DO	pН	BOD	TSS	FC	E	C Ch	loride	Cond	TP	NH3-N	NO2-N	NO3-N
2020-1502-01 Northla	and Drive Bridge (250120)	09:30	22.1	7.52	8.18	<4	6.7	25	2	19	46	631	0.06	<0.2	0.032	0.95
	ny Street Bridge (250090)	10:20	22.8	8.83	8.27	<4	<5.0	66	7	78	55	643	0.06	<0.2	0.029	0.94
	ad Bridge South (250070)	09:43	22.3	7.65	8.08	<4	<5.0	172			64	699	0.07	<0.2	0.05	1.1
2020-1502-04 Railroa	ad Bridge North (250071)	09:40	22.4	7.68	8.11	<4	<5.0	228	2	38	62	696	0.12	<0.2	0.112	1.47
	Wilson Avenue (250062)	09:14	22.0	7.72	8.13	<4	5.0	145	19	94	62	701	0.10	<0.2	0.087	1.43
2020-1502-06 Eastma	anville (250040)	08:25	22.8	8.70	8.25	<4	8.7	22	3	66	75	726	0.09	<0.2	0.093	1.69
Streams		Time	Temp	DO	pН	BOD	TSS	FC	E	C Ch	loride	Cond	TP	NH3-N	NO2-N	NO3-N
2020-1502-07 Rogue	River at West River Drive	09:05	16.7	8.85	8.38	<4	<5.0	145			46	603	<0.05	<0.2	<0.015	1.34
2020-1502-08 Mill Cr	reek at West River Drive	08:30	14.1	9.78	8.42	<4	<5.0	121			56	704	<0.05	<0.2	0.02	1.54
2020-1502-09 Indian	Mill Creek at Turner Avenue	08:00	13.6	9.47	8.03	<4	<5.0	488			116	912	< 0.05	< 0.2	0.016	1.79
2020-1502-10 Silver (Creek at Croften/Roy	07:18	17.4	9.11	8.29	<4	<5.0	>2419	.6		194	1190	<0.05	<0.2	0.021	2.92
2020-1502-11 Plaster	1 at Burton	07:30	16.9	7.79	8.04	<4	5.7	326			287	1150	<0.05	<0.2	0.027	1.29
2020-1502-12 Plaster	2 at Market	10:40	17.9	9.81	8.18	2.4	<5.0	>2419	.6		190	1210	<0.05	<0.2	0.023	1.45
2020-1502-13 Buck C	Creek at Chicago Drive	07:55	16.7	8.46	8.18	<4	<5.0	488			179	1210	<0.05	<0.2	0.015	0.85
2020-1502-14 Deer C	reek	08:40	19.0	6.59	8.14	<4	12	285			39	604	0.19	<0.2	0.055	1.1
2020-1502-15 Coldbro	ook Storm Drain	07:24	16.2	9.55	7.92	<4	<5.0	488			216	1320	< 0.05	<0.2	<0.015	1.23
														iscellaneous !	Information	
													er Conditio Fechnicians			
Grand River		Cr	Cu	Fe	Hg	Ni		Ag	Zn	Hard	WQI					
2020-1502-01 Northla	and Drive Bridge (250120)	< 0.0020	<0.0020	0.16	<0.000	< 0.002	0 <0	.0010	<0.020	340	78.1			_ Test Desci	riptions	
2020-1502-02 Wealth	y Street Bridge (250090)	< 0.0020	<0.0020	0.13	< 0.000	< 0.002	0 <0	.0010	<0.020	330	75.4		(hh:mm)			
2020-1502-03 Railroa	d Bridge South (250070)	< 0.0020	<0.0020	0.14	< 0.000	< 0.002	0 <0	.0010	<0.020	340	71.4		erature (°C Dissolved O	") xygen (mg/L)		
2020-1502-04 Railroa	d Bridge North (250071)	< 0.0020	<0.0020	0.18	< 0.000	0.0084	<0	.0010	<0.020	410	70.3	pH (pl	H units)			
2020-1502-05 M-11, V	Wilson Avenue (250062)	< 0.0020	<0.0020	0.20	< 0.000	€ <0.002	0 <0	.0010	<0.020	320	71.9			hemical Oxyg nded Solids (1	gen Demand (mg/L)	mg/L)
2020-1502-06 Eastman	nville (250040)	<0.0020	<0.0020	0.21	<0.000	0.002	0 <0	.0010	<0.020	330	76.8	FC: Fo		m (#FC/100n		
Streams		Cr	Cu	Fe	Hg	Ni		Ag	Zn	Hard	WQI	Condi	ictivity (S/			
	River at West River Drive	< 0.0020	<0.0020	0.14	<0.000	< 0.002		.0010	<0.020	330	69.8			orous (mg/L) ia as nitrogen		
_	eek at West River Drive	<0.0020	<0.0020	0.15	<0.000			.0010	<0.020	400	69.1	NO2-1	N: Nitrite a	s nitrogen (m	g/L)	
	Mill Creek at Turner Avenue	< 0.0020	<0.0020	0.24	<0.000			.0010	<0.020	410	64.2		N: Nitrate a otal Chromi	s nitrogen (m um (g/L)	g/L)	
2020-1502-10 Silver C		0.0034	<0.0020	0.11	<0.000			.0010	0.022	370	57.0	Cu: To	otal Copper	(g/L)		
2020-1502-11 Plaster	•	< 0.0020	<0.0020	0.30	<0.000			.0010	<0.020	390	62.8		otal Iron (g/ otal Mercur			
2020-1502-12 Plaster		< 0.0020	<0.0020	0.16	< 0.000			.0010	<0.020	350	60.7	Ni: To	tal Nickel (g/L)		
2020-1502-13 Buck C		< 0.0020	<0.0020	0.36	< 0.000			.0010	<0.020	400	65.4	Ag: To	otal Silver (otal Zinc (g	g/L) /L)		
2020-1502-14 Deer Cr	_	< 0.0020	0.0027	0.48	<0.000		-	.0010	<0.020	310	65.7	Hardı	iess (mg/L	as CaCO3)		
2020-1502-15 Coldbro		<0.0020	<0.0020	0.23	<0.000		-	.0010	<0.020	390	65.1	WQI:	Water Qua	lity Index (pe	rcent)	

QUARTE	RLY RIVER SURVEY	REPOR	T		Se	ptemb	er 1	6, 202	20		CITY	OF C	SRAN	ID RAF	PIDS E	PSD
Grand Rive	r	Time	Temp	DO	pН	BOD	TSS	FC	E	с с	hloride	Cond	TP	NH3-N	NO2-N	NO3-N
2020-1672-01	Northland Drive Bridge (250120)	08:20	17.3	8.59	8.14	< 2	6.6	25	3	31	37	574	0.07	<0.2	0.037	1.28
2020-1672-02	Wealthy Street Bridge (250090)	09:18	17.5	9.03	8.21	< 2	6.5	65	5	58	40	578	0.08	< 0.2	0.024	1.22
2020-1672-03	Railroad Bridge South (250070)	10:24	17.5	8.8	8.2	< 2	7	86			50	622	0.07	< 0.2	0.032	1.32
2020-1672-04	Railroad Bridge North (250071)	10:20	17.5	9.0	8.1	< 2	6.4	83	8	30	46	605	0.07	< 0.2	0.047	1.53
2020-1672-05	M-11, Wilson Avenue (250062)	09:55	17.5	8.9	8.2	< 2	5.4	108	1	28	47	604	0.05	< 0.2	0.043	1.45
2020-1672-06	Eastmanville (250040)	08:58	17.4	8.8	8.2	< 2	10.5	142	1	66	51	619	0.10	<0.2	0.061	1.75
Streams		Time	Temp	DO	pН	BOD	TSS	FC	E	с с	hloride	Cond	TP	NH3-N	NO2-N	NO3-N
2020-1672-07	Rogue River at West River Drive	08:08	14.4	9.01	8.30	< 2	6.2	186			39	595	0.05	<0.2	0.021	1.42
2020-1672-08	Mill Creek at West River Drive	07:48	13.5	9.44	8.36	< 2	8.8	210			53	706	<0.05	<0.2	0.018	1.49
2020-1672-09	Indian Mill Creek at Turner Avenue	07:35	13.3	9.04	8.11	< 2	2	727			114	954	<0.05	<0.2	0.026	1.7
2020-1672-10	Silver Creek at Croften/Roy	07:12	17.0	9.1	8.1	< 2	2.4	1414	1		169	1110	0.06	<0.2	<0.015	2.58
2020-1672-11	Plaster 1 at Burton	07:34	15.4	8.2	8.0	< 2	4.8	649			175	1120	0.06	<0.2	0.029	1.02
2020-1672-12	Plaster 2 at Market	09:34	15.7	8.89	8.06	< 2	<2.0	308			182	1200	<0.05	<0.2	0.025	1.1
2020-1672-13	Buck Creek at Chicago Drive	08:05	15.1	8.7	8.2	< 2	2.9	285			170	1170	<0.05	<0.2	0.019	0.81
2020-1672-14	Deer Creek	09:18	15.7	7.9	8.1	< 2	8.1	248			44	616	0.13	<0.2	0.048	1.64
2020-1672-15	Coldbrook Storm Drain	07:20	15.4	9.23	8.18	< 2	2.2	461			214	1290	0.05	< 0.2	0.032	1.11
													M	fiscellaneous l	Information	
													er Conditio			
Grand Rive	r	\mathbf{Cr}	Cu	Fe	Hg	Ni		Ag	Zn	Hard	WQI					
2020-1672-01	Northland Drive Bridge (250120)	< 0.0020	<0.0020	0.25	<0.000	<0.002	0 <	0.0010	< 0.020	310	81.1			Test Desci	riptions	
2020-1672-02	Wealthy Street Bridge (250090)	< 0.0020	<0.0020	0.26	<0.000	<0.002	0 ⊲	0.0010	< 0.020	280	78.4		(hh:mm)			
2020-1672-03	Railroad Bridge South (250070)	< 0.0020	<0.0020	0.29	<0.000	<0.002	0 <	0.0010	< 0.020	330	77.1	Temp DO: T	erature (°C Dissolved ()	C) xygen (mg/L)	1	
2020-1672-04	Railroad Bridge North (250071)	< 0.0020	<0.0020	0.26	<0.000	<0.002	0 <	0.0010	< 0.020	320	77.5	pH (pl	H units)			
2020-1672-05	M-11, Wilson Avenue (250062)	< 0.0020	<0.0020	0.26	<0.000	<0.002	0 <	0.0010	<0.020	300	76.3			chemical Oxyg ended Solids (gen Demand (; mg/L)	mg/L)
2020-1672-06	Eastmanville (250040)	<0.0020	<0.0020	0.39	<0.000	<0.002	0 ⊲	0.0010	<0.020	300	74.6	FC: F EC: E		rm (#FC/100n 100ml)		
Streams		Cr	Cu	Fe	Hg	Ni		Ag	Zn	Hard	WQI	Condi	uctivity (S/	cm)		
	Rogue River at West River Drive	< 0.0020	<0.0020	0.25	<0.000			0.0010	<0.020	330	72.8	1P: 1		norous (mg/L) ia as nitrogen		
	Mill Creek at West River Drive	< 0.0020	<0.0020	0.27	< 0.000			0.0010	<0.020	380	71.8	NO2-1	N: Nitrite a	s nitrogen (m	g/L)	
	Indian Mill Creek at Turner Avenue	< 0.0020	<0.0020	0.25	<0.000			0.0010	< 0.020	370	66.6		N: Nitrate a otal Chrom	is nitrogen (m inm (g/L)	g/L)	
	Silver Creek at Croften/Roy	0.0027	<0.0020	0.11	< 0.000		-	0.0010	< 0.020	400	63.9	Cu: T	otal Copper	r (g/L)		
	Plaster 1 at Burton	< 0.0020	<0.0020	0.32	< 0.000			0.0010	<0.020	370	67.4	Fe: To	otal Iron (g/ otal Mercu	L) rv (ø/L)		
	Plaster 2 at Market	< 0.0020	<0.0020	0.17	< 0.000			0.0010	< 0.020	330	70.2	Ni: To	tal Nickel	(g/L)		
	Buck Creek at Chicago Drive	< 0.0020	<0.0020	0.29	< 0.000			0.0010	< 0.020	350	71.3		otal Silver (otal Zinc (g			
2020-1672-14	•	< 0.0020	<0.0020	0.43	<0.000		-	0.0010	<0.020	290	71.2	Hardı	ness (mg/L	as CaCO3)		
	Coldbrook Storm Drain	< 0.0020	<0.0020	0.27	< 0.000			0.0010	< 0.020	350	67.8	WQI:	Water Qua	ility Index (pe	rcent)	
			-0.0020		-0.000		- "				00					

ZOARTERET RIVER CORVET	REPOR	T		0	ctobe	r 14,	2020			CITY	OF C	GRAN	D RAF	IDS E	PSD
Grand River	Time	Temp	DO	pН	BOD	TSS	FC	EC	Chle	oride	Cond	TP	NH3-N	NO2-N	NO3-N
2020-1828-01 Northland Drive Bridge (250120)	08:52	12.8	10.1	8.44	<2.0		23	52	5	4	653	<0.05	< 0.2	<0.10	0.95
2020-1828-02 Wealthy Street Bridge (250090)	09:45	13.0	10.5	8.31	<2.0	<2.0	142	43	4	4	666	<0.05	< 0.2	<0.10	0.93
2020-1828-03 Railroad Bridge South (250070)	09:45	12.9	9.83	8.27	<2.0	<2.0	548		(6	697	<0.05	< 0.2	<0.10	1.0
2020-1828-04 Railroad Bridge North (250071)	09:35	13.1	9.85	8.17	<2.0	<2.0	261	46	(55	698	<0.05	<0.5	<0.10	1.4
2020-1828-05 M-11, Wilson Avenue (250062)	09:10	13.2	9.78	8.30	<2.0	<2.0	387	47	(55	698	<0.05	< 0.2	<0.10	1.3
2020-1828-06 Eastmanville (250040)	08:30	13.6	8.94	8.16	<2.0	3	1203	8	(52	688	<0.05	<0.2	<0.10	1.4
Streams	Time	Temp	DO	pН	BOD	TSS	FC	EC	Chl	oride	Cond	TP	NH3-N	NO2-N	NO3-N
2020-1828-07 Rogue River at West River Drive	08:37	10.1	9.80	8.17	<2.0	3.3	166		4	Ю	602	<0.05	< 0.2	<0.10	0.99
2020-1828-08 Mill Creek at West River Drive	08:13	9.9	10.2	8.32	<2.0	4.1	167		4	4	713	<0.05	<0.2	<0.10	0.89
2020-1828-09 Indian Mill Creek at Turner Avenue	07:37	10.3	9.52	8.10	<2.0	<2.0	579		g	4	919	<0.05	< 0.2	<0.10	1.2
2020-1828-10 Silver Creek at Croften/Roy	07:10	16.1	9.20	8.19	<2.0	<2.0	1986		1	92	1170	0.06	<0.2	<0.10	2.7
2020-1828-11 Plaster 1 at Burton	07:30	12.4	8.28	7.90	2.8	6.8	1733		1	36	915	0.05	<0.2	<0.10	0.45
2020-1828-12 Plaster 2 at Market	10:15	12.4	9.52	7.99	<2.0	3.5	>2419.6		1	49	955	<0.05	<0.2	<0.10	0.59
2020-1828-13 Buck Creek at Chicago Drive	07:49	12.0	8.70	8.01	<2.0	2.5	2420		1	27	922	<0.05	< 0.2	<0.10	0.51
2020-1828-14 Deer Creek	08:40	11.5	5.95	7.88	<2.0	3.8	548		4	1	698	0.09	< 0.2	<0.10	1.1
2020-1828-15 Coldbrook Storm Drain	07:12	13.2	9.89	7.99	<2	<2.0	26		1	72	1090	0.05	< 0.2	<0.10	0.73
												M	iscellaneous l	Information	
												ner Conditio			
	C	C	E.	Hg	3.72			'n	Hard	WOI	Field?	Technicians			
Grand River	Cr	Cu	re		Ni		1.g Z	ш							
Grand River 2020-1828-01 Northland Drive Bridge (250120)	<0.0020	<0.0020	Fe 0.12	<0.000	<0.0020			020	420	81.2			Test Descr	iptions_	
2020-1828-01 Northland Drive Bridge (250120)				_		< 0.	0010 <0				Time	(hh:mm)	_ Test Descr	iptions	
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090)	<0.0020 <0.0020	<0.0020 <0.0020	0.12 0.10	<0.000	<0.0020 <0.0020) <0.) <0.	0010 <0.	.020 .020	420	81.2	Temp	(hh:mm) erature (°C	 D	. —	_
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070)	<0.0020	<0.0020	0.12	<0.000	<0.0020 <0.0020 <0.0020) <0.) <0.) <0.	0010 <0. 0010 <0. 0010 <0.	020	420 370	81.2 76.0	Temp DO: I	erature (°C Dissolved O	_	. —	
Grand River 2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062)	<0.0020 <0.0020 <0.0020	<0.0020 <0.0020 0.0033	0.12 0.10 0.13	<0.000 <0.000 <0.000	<0.0020 <0.0020 <0.0020	0 <0. 0 <0. 0 <0. 0 <0.	0010 <0. 0010 <0. 0010 <0. 0010 <0.	020 020 020	420 370 570	81.2 76.0 70.7	Temp DO: I pH (pl BOD:	erature (°C Dissolved O H units) 5-day Bioc	C) xygen (mg/L) themical Oxyg	gen Demand (i	ng/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062)	<0.0020 <0.0020 <0.0020 <0.0020	<0.0020 <0.0020 0.0033 <0.0020	0.12 0.10 0.13 0.12	<0.000: <0.000: <0.000:	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020	0	0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0.	020 020 020 020	420 370 570 530	81.2 76.0 70.7 73.2	Temp DO: I pH (pi BOD: TSS: T FC: F EC: E	erature (°C Dissolved O: H units) 5-day Bioc Total Suspe ecal Colifor Ecoli (#EC/	C) xygen (mg/L) chemical Oxyg nded Solids (i rm (#FC/100n 100ml)	en Demand (i	ng/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040)	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020	<0.0020 <0.0020 0.0033 <0.0020 <0.0020	0.12 0.10 0.13 0.12 0.12	<0.000: <0.000: <0.000: <0.000: <0.000: <0.000:	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020	0	0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0.	020 020 020 020 020 020 020	420 370 570 530 380	81.2 76.0 70.7 73.2 71.4 66.8	Temp DO: I pH (pi BOD: TSS: T FC: F EC: E Chlor Condi	erature (°C) Dissolved O. H units) 5-day Bioc Total Suspe ecal Colifor E.coli (#EC/: ide (mg/L) uctivity (S/:	C) xygen (mg/L) chemical Oxygended Solids (in (#FC/100m100m1) cm)	en Demand (i	ng/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040) Streams	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Cr	<0.0020 <0.0020 0.0033 <0.0020 <0.0020 <0.0020	0.12 0.10 0.13 0.12 0.12 0.18	<0.0000 <0.0000 <0.0000 <0.0000 <0.0000 Hg	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Ni) <0.) <0.) <0.) <0.) <0.) <0.	0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0.	020 020 020 020 020 020 020	420 370 570 530 380 420	81.2 76.0 70.7 73.2 71.4 66.8	Temp DO: I pH (pi BOD: TSS: T FC: F EC: E Chlor Condi	erature (°C) Dissolved O: H units) 5-day Bioc Total Suspe ecal Colifor E.coli (#EC/- ide (mg/L) uctivity (S/- otal Phosph	C) xygen (mg/L) chemical Oxygended Solids (imm (#FC/100m100m1) cm) cm) con)	gen Demand (1 ng/L) al)	ng/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040) Streams 2020-1828-07 Rogue River at West River Drive	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Cr <0.0020	<0.0020 <0.0020 0.0033 <0.0020 <0.0020 <0.0020 Cu <0.0020	0.12 0.10 0.13 0.12 0.12 0.18 Fe 0.19	<0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 Hg	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Ni <0.0020	0) <0. 0) <0. 0) <0. 0) <0. 0) <0. 1	0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0. 0010 <0.	020 020 020 020 020 020 020 020	420 370 570 530 380 420 Hard 330	81.2 76.0 70.7 73.2 71.4 66.8 WQI 74.3	Temp DO: I pH (pi BOD: TSS: ' FC: F EC: E Chlore Conde TP: T NH3-I NO2-I	erature (°C) Dissolved O. H units) S-day Bioc Total Suspe Secal Colifor Cide (mg/L) uctivity (S/c otal Phosph N: Ammoni N: Nitrite as	c) xygen (mg/L) chemical Oxyg mded Solids (i m (#FC/100n 100ml) cm) torous (mg/L) a as nitrogen s nitrogen (mg	gen Demand (ing/L) (mg/L)	ng/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040) Streams 2020-1828-07 Rogue River at West River Drive 2020-1828-08 Mill Creek at West River Drive	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Cr <0.0020 <0.0020	<0.0020 <0.0020 0.0033 <0.0020 <0.0020 <0.0020 Cu <0.0020 <0.0020 <0.0020	0.12 0.10 0.13 0.12 0.12 0.18 Fe 0.19 0.17	<0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Ni <0.0020 <0.0020	0) <0. 0) <0. 0) <0. 0) <0. 0) <0. 0) <0.	0010	020 020 020 020 020 020 020 020	420 370 570 530 380 420 Hard 330 440	81.2 76.0 70.7 73.2 71.4 66.8 WQI 74.3 74.4	Temp DO: I pH (pl BOD: TSS: ' FC: F EC: E Chlore Conde TP: T NH3-I NO2-I	erature (°C) Dissolved O. H units) 5-day Bioc Total Suspe ecal Colifor E.coli (#EC/- ide (mg/L) uctivity (S/- otal Phosph N: Ammoni N: Nitrate a N: Nitrate a	c) xygen (mg/L) xygen (mg/L) chemical Oxygended Solids (imm (#FC/100m100m1) cm) com) iorous (mg/L) ia as nitrogen (mg/s nitrog	gen Demand (ing/L) (mg/L)	ng/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040) Streams 2020-1828-07 Rogue River at West River Drive 2020-1828-09 Mill Creek at West River Drive 2020-1828-09 Indian Mill Creek at Tumer Avenue	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Cr <0.0020 <0.0020 <0.0020 <0.0020	<0.0020 <0.0020 0.0033 <0.0020 <0.0020 <0.0020 Cu <0.0020 <0.0020 <0.0020 <0.0020	0.12 0.10 0.13 0.12 0.12 0.18 Fe 0.19 0.17 0.23	<0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Ni <0.0020 <0.0020 <0.0020 <0.0020 <0.0020	0) <0. 0) <0. 0) <0. 0) <0. 0) <0. 0) <0. 1	0010	020 020 020 020 020 020 020 020 020 020	420 370 570 530 380 420 Hard 330 440 420	81.2 76.0 70.7 73.2 71.4 66.8 WQI 74.3 74.4 68.8	Temp DO: I pH (pi) BOD: TSS: : FC: E EC: E Chlor Cond TP: T NH3-1 NO2-1 Cr: Tr Cu: T	erature (°C) issolved O: H units) 5-day Bioc Total Suspe ecal Colifor .coli (#EC/ ioti (mg/L) uctivity (S/ iotal Phosph N: Ammoni N: Nitrite ai notal Chromi otal Copper	chemical Oxygen (mg/L) chemical Oxygended Solids (imm (#FC/100m100m1) cm) cm) corous (mg/L) is a sintrogen (mg is nitrogen (mg	gen Demand (ing/L) (mg/L)	ng/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040) Streams 2020-1828-07 Rogue River at West River Drive 2020-1828-08 Mill Creek at West River Drive 2020-1828-09 Indian Mill Creek at Turner Avenue 2020-1828-10 Silver Creek at Croften/Roy	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Cr <0.0020 <0.0020 <0.0020 <0.0020	 <0.0020 <0.0020 <0.0033 <0.0020 <0.0044 	0.12 0.10 0.13 0.12 0.12 0.18 Fe 0.19 0.17 0.23 <0.10	<0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Ni <0.0020 <0.0020 <0.0020 0.0020 <0.0020 <0.0020	(1) <0. (2) <0. (3) <0. (4) <0. (5) <0. (6) <0. (7) <0. (8) <0. (9) <0.	0010	020 020 020 020 020 020 020 020 020 020	420 370 570 530 380 420 Hard 330 440 420 340	81.2 76.0 70.7 73.2 71.4 66.8 WQI 74.3 74.4 68.8 61.2	Temp DO: I pH (pi BOD: TSS:: FC: F EC: E Chlor TP: T NH3-I NO2-I NO3-I Cr: Tc Cu: T Fe: Te	erature (°C) issolved O issolved O H units) 5-day Bioc Total Suspe ecal Colifor E.coli (#EC/- ide (mg/L) uctivity (S/- otal Phosph N: Ammoni N: Nitrate a otal Chromi otal Copper otal Iron (g/-	C) xygen (mg/L) xygen (mg/L) xygen (mg/L) xygen (mg/E) xom (#FE/100m 100ml) cm) xom	gen Demand (ing/L) (mg/L)	ng/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040) Streams 2020-1828-07 Rogue River at West River Drive 2020-1828-08 Mill Creek at West River Drive 2020-1828-09 Indian Mill Creek at Tumer Avenue 2020-1828-10 Silver Creek at Croften/Roy 2020-1828-11 Plaster 1 at Burton	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Cr <0.0020 <0.0020 <0.0020 <0.0020 0.0036 0.0021	<0.0020 <0.0020 0.0033 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0024 <0.0020 <0.0044 <0.0020	0.12 0.10 0.13 0.12 0.12 0.18 Fe 0.19 0.17 0.23 <0.10	<0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000	<pre><0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 </pre> Ni <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0028 <0.0020 <0.0020	(1) <0. (2) <0. (3) <0. (4) <0. (5) <0. (6) <0. (7) <0. (8) <0. (9) <0. (9) <0.	0010	020 020 020 020 020 020 020 020 020 020	420 370 570 530 380 420 Hard 330 440 420 340 240	81.2 76.0 70.7 73.2 71.4 66.8 WQI 74.3 74.4 68.8 61.2 64.3	Temp DO: I pH (pi BOD: TSS: ' FC: F EC: E Chlor TP: T NH3-J NO2-J NO2-J Cr: Tc Cu: T Fe: Tc Hg: T	erature (°C) issolved O issolved O H units) 5-day Bioc Total Suspe- cecal Colifor Coli (#EC/ ide (mg/L) uctivity (S/ total Phosph N: Ammoni N: Nitrite a: N: Nitrite a: N: Nitrota Chromi total Copper total Inon (g/ total Mescur total Nickel (1)	C) xygen (mg/L) chemical Oxyg nded Solids (r mm (#FC/100n 100ml) cm) corous (mg/L) ia as nitrogen (m is s nitrogen (m im (g/L) L) y (g/L) g/L)	gen Demand (ing/L) (mg/L)	mg/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040) Streams 2020-1828-07 Rogue River at West River Drive 2020-1828-08 Mill Creek at West River Drive 2020-1828-09 Indian Mill Creek at Turner Avenue 2020-1828-11 Silver Creek at Croften/Roy 2020-1828-12 Plaster 1 at Burton 2020-1828-12 Plaster 2 at Market	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Cr <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020	<0.0020 <0.0020 0.0033 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0024 0.0020 0.0044 0.0020 0.0022	0.12 0.10 0.13 0.12 0.12 0.18 Fe 0.19 0.17 0.23 <0.10 0.39 0.28	<0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000	<pre><0.0020 <0.0020 <0.0020</pre>	(a) <0. (b) <0. (c) <0. (c) <0. (d) <0. (d) <0. (d) <0. (d) <0. (d) <0. (d) <0. (d) <0. (d) <0.	0010	020 020 020 020 020 020 020 020 020 020	420 370 570 530 380 420 Hard 330 440 420 340 240 270	81.2 76.0 70.7 73.2 71.4 66.8 WQI 74.3 74.4 68.8 61.2 64.3 65.5	Temp DO: I pH (pl: BOD: I pH (pl: BOD: I pH (pl: BOD: I ph:	erature (°C) issolved O H units) 5-day Bioc Total Suspe ceal Colifor E.coli (#EC/ ide (mg/L) uctivity (S/ total Phosph N: Ammoni N: Nitrate a: N: Nitrate a: N: Nitrate atotal Chromi rotal Copper total Iron (g/ rotal Mercur total Nickel (total Silver (total Si	C) xygen (mg/L) chemical Oxyg mded Solids (t m (#FC/100m 100ml) cm) crous (mg/L) as as nitrogen (mg so nitrogen (mg so nitrogen (mg y(g/L) y(g/L) g/L) g/L) g/L)	gen Demand (ing/L) (mg/L)	mg/L)
2020-1828-01 Northland Drive Bridge (250120) 2020-1828-02 Wealthy Street Bridge (250090) 2020-1828-03 Railroad Bridge South (250070) 2020-1828-04 Railroad Bridge North (250071) 2020-1828-05 M-11, Wilson Avenue (250062) 2020-1828-06 Eastmanville (250040) Streams 2020-1828-07 Rogue River at West River Drive 2020-1828-08 Mill Creek at West River Drive 2020-1828-09 Indian Mill Creek at Tumer Avenue 2020-1828-10 Silver Creek at Croften/Roy 2020-1828-11 Plaster 1 at Burton	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 Cr <0.0020 <0.0020 <0.0020 <0.0020 0.0036 0.0021	<0.0020 <0.0020 0.0033 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0024 <0.0020 <0.0044 <0.0020	0.12 0.10 0.13 0.12 0.12 0.18 Fe 0.19 0.17 0.23 <0.10	<0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000: <0.000	<0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020	(a) <0. (b) <0. (c) <0	0010	020 020 020 020 020 020 020 020 020 020	420 370 570 530 380 420 Hard 330 440 420 340 240	81.2 76.0 70.7 73.2 71.4 66.8 WQI 74.3 74.4 68.8 61.2 64.3	Temp DO: I pH (pH (pH SO): FC: F C: F C: F C: F Chlor Condu TP: T NH3-3 CT: T Cu: T Fe: T Hg: T Ni: T Ag: T Zn: T	erature (°C) issolved O issolved O H units) 5-day Bioc Total Suspe- cecal Colifor Coli (#EC/ ide (mg/L) uctivity (S/ total Phosph N: Ammoni N: Nitrite a: N: Nitrite a: N: Nitrota Chromi total Copper total Inon (g/ total Mescur total Nickel (1)	wygen (mg/L) xygen (mg/L)	gen Demand (ing/L) (mg/L)	ng/L)

QUARTE	RLY RIVER SURVEY	REPOR	Т			March	ı 9, 2	2021			CITY	OF C	SRAN	D RAF	PIDS E	PSD
Grand Rive	er	Time	Temp	DO	pН	BOD	TSS	FC	E	c c	hloride	Cond	TP	NH3-N	NO2-N	NO3-N
2021-0375-01	Northland Drive Bridge (250120)	09:38	3.7	12.6	7.9	2.2	7.8	39		8	40	601	<0.05	<2.0	< 0.10	4.3
2021-0375-02	Wealthy Street Bridge (250090)	10:17	4.0	13.2	8.0	2.2	10.1	23	1	0	41	589	0.06	<2.0	< 0.10	4.1
2021-0375-03	Railroad Bridge South (250070)	10:33	4.2	12.8	8.2	2.3	10.5	49			50	633	0.09	<2.0	< 0.10	4.2
2021-0375-04	Railroad Bridge North (250071)	10:18	4.4	12.6	8.2	2.3	10.3	37	1	4	43	605	0.07	<2.0	< 0.10	4.1
2021-0375-05	M-11, Wilson Avenue (250062)	09:40	4.1	12.8	8.2	<2.0	9.9	37	1	0	45	615	0.08	<2.0	< 0.10	4.1
2021-0375-06	Eastmanville (250040)	08:47	4.0	12.5	8.4	2.2	9.1	39	1	15	49	634	0.07	<2.0	0.11	4.2
Streams		Time	Temp	DO	pН	BOD	TSS	FC	E	c c	hloride	Cond	TP	NH3-N	NO2-N	NO3-N
2021-0375-07	Rogue River at West River Drive	09:15	3.8	12.8	7.9	<2.0	5.3	56			33	595	<0.05	<2.0	< 0.10	2.0
2021-0375-08	Mill Creek at West River Drive	08:10	2.6	13.0	8.2	4.9	93.6	345			18	366	0.29	<2.0	< 0.10	2.5
2021-0375-09	Indian Mill Creek at Turner Avenue	07:40	4.0	11.9	7.4	2.5	10	326			64	616	0.11	<2.0	< 0.10	1.5
2021-0375-10	Silver Creek at Croften/Roy	07:30	8.5	10.5	8.1	<2.0	<2.0	727			200	1190	<0.05	<2.0	< 0.10	2.7
2021-0375-11	Plaster 1 at Burton	07:47	4.2	11.7	8.1	<2.0	2.8	50			260	1280	<0.05	<2.0	< 0.10	1.4
2021-0375-12	Plaster 2 at Market	10:39	5.2	12.8	8.0	2.3	4.1	53			270	1310	<0.05	<2.0	< 0.10	1.3
2021-0375-13	Buck Creek at Chicago Drive	08:14	6.3	11.1	8.1	<2.0	3.3	40			170	1140	<0.05	<2.0	< 0.10	0.98
2021-0375-14	Deer Creek	09:00	4.0	11.7	8.2	2.0	10.8	186			33	541	0.18	<2.0	< 0.10	8
2021-0375-15	Coldbrook Storm Drain	07:17	5.2	12.2	7.7	<2.0	3.9	152			230	1160	<0.05	<2.0	< 0.10	0.42
													M	iscellaneous l	Information	
													er Conditio			
Grand Rive	er	Cr	Cu	Fe	Hg	Ni		Ag	Zn	Hard	WQI					
2021-0375-01	Northland Drive Bridge (250120)	< 0.0020	0.0022	0.58	< 0.000	< 0.002	0 <	0.0010	< 0.020	350	75.8			Test Desci	riptions	
2021-0375-02	Wealthy Street Bridge (250090)	< 0.0020	0.0021	0.65	< 0.000	< 0.002	0 <	0.0010	< 0.020	440	77.1		(hh:mm)	_		
2021-0375-03	Railroad Bridge South (250070)	< 0.0020	0.0021	0.57	<0.000	< 0.002	0 <	0.0010	< 0.020	310	73.8		erature (°C Dissolved O	l) xygen (mg/L))	
2021-0375-04	Railroad Bridge North (250071)	< 0.0020	<0.0020	0.59	< 0.000			0.0010	<0.020	280	75.0	pH (p	H units)			7 3
2021-0375-05	M-11, Wilson Avenue (250062)	< 0.0020	0.0021	0.55	<0.000	< 0.002	0 <	0.0010	< 0.020	390	75.6			nded Solids (gen Demand (mg/L)	mg/L)
2021-0375-06	Eastmanville (250040)	<0.0020	0.0023	0.55	<0.000	<0.002	0 <	0.0010	<0.020	280	74.0	FC: F EC: E		m (#FC/100n		
Streams		Cr	Cu	Fe	Hg	Ni		Ag	Zn	Hard	wqı	Cond	uctivity (S/	cm) iorous (mg/L)		
2021-0375-07	Rogue River at West River Drive	< 0.0020	<0.0020	0.33	<0.000	< 0.002	0 <	0.0010	<0.020	290	79.0	NH3-	N: Ammoni	ia as nitrogen	(mg/L)	
2021-0375-08	Mill Creek at West River Drive	0.0047	0.0052	4.2	< 0.000	0.0039	<	0.0010	<0.020	180	65.6			s nitrogen (m s nitrogen (m		
2021-0375-09	Indian Mill Creek at Turner Avenue	< 0.0020	0.0068	1.0	< 0.000	< 0.002	0 <	0.0010	< 0.020	230	72.4	Cr: T	otal Chromi	ium (g/L)	B-/	
2021-0375-10	Silver Creek at Croften/Roy	0.0033	0.0030	0.12	< 0.000	0.0032	. <	0.0010	<0.020	340	64.0		otal Copper otal Iron (g/			
2021-0375-11	Plaster 1 at Burton	0.0057	0.0020	0.46	<0.000	< 0.002	0 <	0.0010	<0.020	320	74.7	Hg: T	otal Mercu	v (g/L)		
2021-0375-12	Plaster 2 at Market	0.0060	0.0020	0.41	<0.000	< 0.002	0 <	0.0010	< 0.020	330	74.0		otal Nickel (otal Silver (
2021-0375-13	Buck Creek at Chicago Drive	< 0.0020	<0.0020	0.42	< 0.000	< 0.002	0 <	0.0010	<0.020	370	77.8	Zn: T	otal Zinc (g	/L)		
2021-0375-14	Deer Creek	0.0023	0.0059	1.3	<0.000	0.0022	<	0.0010	<0.020	230	64.4		ness (mg/L			
2021 0375 15	Coldbrook Storm Drain	< 0.0020	0.0041	0.38	< 0.000	< 0.002	0 -	0.0010	< 0.020	290	75.9	WQI:	water Qua	lity Index (pe	icent)	

- b. All CSO and SSO occurrences are reported to the DEQ as required in NPDES Permit #MI0026069 when they occur.
- c. Illicit Discharges can be found in Part 4 of the Report.
- b. Data and Results [40 CFR 122.42(c)(4)] see above
- c. BMP Changes [40 CFR 122.42(c)(2)]
 - a. None.
 - b. We have a Stormwater Standards Manual that emphasizes green infrastructure and will be implemented upon revising our City ordinance. A draft ordinance will be submitted by March 1, 2021.
- d. Revised Financial Analysis [40 CFR 122.42(c)(3)]
 - a. The stormwater program continues to be funded from the City General Fund, Local and Major Streets, Refuse, and Vital Streets Funds. Funding levels have been steadily increasing due to low impact development funding through the streets income tax extension. Funds for asset management have also increased. A fiscal analysis of City of Grand Rapids is included as an attachment. The one attached is the most current from September 2021.
- e. Annual Budget [40 CFR 122.42(c)(5)]

Activity	FY21 Expenditures	FY22 Budget

Stormwater Management (General Fund)	\$850,901	\$1,354,816
Stormwater Maintenance (Local and Major Streets Funds)	\$1,386,071	\$1,414,881
Street Sweeping (Refuse and Vital Streets Funds)	\$1,170,498	\$1,136,092

Capital Improvement Plan

Capital improvement Flan	
Kent County Drain Commissioner Special Assessments	\$45,000.00
Drainage Improvements and Emergency Repairs	\$150,000.00
Pumping Station Capital Improvements	\$100,000.00
Oakleigh Ave in Hogadone District	\$20,000.00
Indian Mill Creek Dredging FY2021	\$50,000.00
Daylighting at The Highlands	\$405,029.00
Coldbrook Drain Rehabilitation - Michigan and Fuller	\$37,500.00
Burton-Breton Branch of Plaster Creek	\$177,900.00
Glen Echo Drain Improvements	\$144,000.00

Summary of Enforcement Actions and Inspections

Activity	2020-2021 Reporting Cycle
Stormwater Inspections	2818
Notices of Violations	45
Corrective Action Orders	18

Summary of Street Sweeping

The City disposed of 6,435 cubic yards of waste from street sweeping from August of 2020 through July 2021. This number is inflated compared to the normal numbers. As reported last year, due to contractor issues, street sweeping waste had been stockpiled since November of 2019. The stockpile was in an area that does not drain to the City stormwater system and EGLE personnel regulating the storage site are fully aware of the issues that we had.